Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals.
نویسندگان
چکیده
Apurinic/apyrimidinic (AP) endonuclease (APE; EC 4.2.99.18) plays a central role in repair of DNA damage due to reactive oxygen species (ROS) because its DNA 3'-phosphoesterase activity removes 3' blocking groups in DNA that are generated by DNA glycosylase/AP-lyases during removal of oxidized bases and by direct ROS reaction with DNA. The major human APE (APE-1) gene is activated selectively by sublethal levels of a variety of ROS and ROS generators, including ionizing radiation, but not by other genotoxicants-e.g., UV light and alkylating agents. Increased expression of APE mRNA and protein was observed both in the HeLa S3 tumor line and in WI 38 primary fibroblasts, and it was accompanied by translocation of the endonuclease to the nucleus. ROS-treated cells showed a significant increase in resistance to the cytotoxicity of such ROS generators as H2O2 and bleomycin, but not to UV light. This "adaptive response" appears to result from enhanced repair of cytotoxic DNA lesions due to an increased activity of APE-1, which may be limiting in the base excision repair process for ROS-induced toxic lesions.
منابع مشابه
Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV.
DNA damage generated by oxygen radicals includes base-free apurinic/apyrimidinic (AP) sites and strand breaks that bear deoxyribose fragments. The yeast Saccharomyces cerevisiae repairs such DNA lesions by using a single major enzyme. We have cloned the yeast structural gene (APN1) encoding this AP endonuclease/3'-repair diesterase by immunological screening of a yeast genomic DNA expression li...
متن کاملThe apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress.
Alkylating agents are standard components of adjuvant chemotherapy for gliomas. We provide evidence here that Ape1/Ref-1, the major mammalian apurinic/apyrimidinic endonuclease (Ap endo), contributes to alkylating agent resistance in human glioma cells by incising DNA at abasic sites. We show that antisense oligonucleotides directed against Ape1/Ref-1 in SNB19, a human glioma cell line lacking ...
متن کاملمروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )
ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2). Autophagy is a catabolic pathway for degradation ...
متن کاملMutagenesis by the autoxidation of iron with isolated DNA.
Oxygen free radicals are highly reactive species generated by many cellular oxidation-reduction processes. These radicals damage cellular constituents and have been causally implicated in the pathogenesis of many human diseases. We report here that oxygen free radicals generated by Fe2+ in aqueous solution are mutagenic. Aerobic incubation of luminal diameter X174 am3 (amber 3 mutation) DNA wit...
متن کاملActivation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP
Apurinic apyrimidinic endonuclease redox effector factor-1 (APE1/Ref-1) is involved both in the base excision repair (BER) of DNA lesions and in the eukaryotic transcriptional regulation. APE1/Ref-1 is regulated at both the transcriptional and post-translational levels, through control of subcellular localization and post-translational modification. In response to stress conditions, several cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 9 شماره
صفحات -
تاریخ انتشار 1998